Quasi-Digital Low-Dropout Voltage Regulator uses Controlled Pass Transistors
نویسندگان
چکیده
This article presents a low quiescent current outputcapacitorless quasi-digital CMOS LDO regulator with controlled pass transistors according to load demands. The pass transistor of the LDO is broken up to two smaller sizes based on a breakup criterion defined here, which considers the maximum output voltage variations to different load current steps to find the suitable current boundary for breaking up. This criterion shows that low load conditions will cause more output variations and settling time if the pass transistor is used in its maximum size. Therefore, using one smaller transistor for low load currents, and another one larger for higher currents, is the best trade-off between output variations, complexity, and power dissipation. The proposed LDO regulator has been designed and post-simulated in HSPICE in a 0.35 μm CMOS process to supply a load current between 0-100 mA while consumes 7.6 μA quiescent current. The results reveal 46% and 69% improvement on the output voltage variations and settling time, respectively.
منابع مشابه
Output-capacitorless segmented low-dropout voltage regulator with controlled pass transistors
This article presents a low quiescent current output-capacitorless quasi-digital complementary metal-oxidesemiconductor (CMOS) low-dropout (LDO) voltage regulator with controlled pass transistors according to load demands. The pass transistor of the LDO is segmented into two smaller sizes based on a proposed segmentation criterion, which considers the maximum output voltage transient variations...
متن کاملApplication Note 1148 Linear Regulators: Theory of Operation and Compensation
The explosive proliferation of battery powered equipment in the past decade has created unique requirements for a voltage regulator that cannot be met by the industry standards like the LM340 or the LM317. These regulators use an NPN Darlington pass transistor (Figure 1), and will be referred to in this document as NPN regulators. The demand for higher performance is being met by the newer low-...
متن کاملApplication Note 1148 Linear Regulators: Theory of Operation and Compensation
The explosive proliferation of battery powered equipment in the past decade has created unique requirements for a voltage regulator that cannot be met by the industry standards like the LM340 or the LM317. These regulators use an NPN Darlington pass transistor (Figure 1), and will be referred to in this document as NPN regulators. The demand for higher performance is being met by the newer low-...
متن کاملLow Dropout Based Noise Minimization of Active Mode Power Gated Circuit
Power gating technique reduces leakage power in the circuit. However, power gating leads to large voltage fluctuation on the power rail during power gating mode to active mode due to the package inductance in the Printed Circuit Board. This voltage fluctuation may cause unwanted transitions in neighboring circuits. In this work, a power gating architecture is developed for minimizing power in a...
متن کاملFully on-chip switched capacitor NMOS low dropout voltage regulator
This paper presents a 1.5 V 50 mA low dropout voltage (LDO) regulator using an NMOS transistor as the output pass element. Continuous time operation of the LDO is achieved using a new switched floating capacitor scheme that raises the gate voltage of the pass element. The regulator has a 0.2 V dropout at a 50 mA load and is stable for a wide load current range with loading capacitances up to 50...
متن کامل